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The inviscid instability of a columnar trailing-line vortex at large values of the 
azimuthal wavenumber n near neutral conditions is considered. This extends an 
earlier analysis (Leibovich & Stewartson 1983), which is not accurate near the limiting 
values of the axial wavenumber for which instabilities exist. Here an asymptotic 
expansion is derived for the solution in the neighbourhood of the lower neutral point 
and the results compared with existing computations a t  moderate values of n. For 
these weak instabilities disturbances are centred near the axis of the vortex and the 
relevant equation is solved in the complex plane by a generalized saddle-point 
method. In  addition, the marginal stability of the vortex is examined, and an estimate 
obtained of the value of the swirl parameter above which the vortex is stable at large 
values of n. 

1. Introduction 
A columnar vortex is an axially symmetric swirling fluid motion in which the axial 

(2-directed) and azimuthal (&directed) velocities are functions only of r ,  the distance 
from the vortex axis. Here we denote these quantities by W(r)  and V ( r )  respectively, 
and cylindrical ( r ,  8 ,  2)-coordinates are implied. The stability characteristics of this 
vortex when subjected to inviscid disturbances have recently attracted much 
attention, notably by Lessen, Singh and Paillet (1974), Duck & Foster (1980) and 
Foster & Duck (1982). These numerical studies describe the growth characteristics 
of strongly unstable normal modes of the form exp [i(az-nB-wt)] with moderate 
azimuthal wavenumbers n and indicate that the growth rate increases with n. 
Leibovich & Stewartson (1983), in a paper to which we shall subsequently refer as 
I, extended these studies and in addition developed an asymptotic theory, valid for 
n % 1, which demonstrates that the maximum growth rate indeed increases with n 
and tends to a limit as n+ 00. Moreover, they were able to give a sufficient (but not 
necessary) condition for the instability of a columnar vortex. If f2 = V / r  and r = rV 
are the angular velocity and circulation of the vortex then the flow is unstable to 
inviscid disturbances if, at any point of the fluid, 
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where primes denote derivatives with respect to r .  We shall refer to flows in which 
(1 .l) holds as ‘strongly unstable’. The condition 

rp > 3 3 ~ 2  

at all points of the flow, was already known to be a sufficient condition for the 
columnar vortex to be stable to axisymmetric disturbances (Howard & Gupta 1962), 
but it is not necessary. 

The mechanism leading to instabilities characterized by (1 .l) has been discussed 
by Leibovich (1983) (see also Leibovich 1984). For ‘pure’ vortices having W = 0, 
Rayleigh’s parameter is @ = 2525, where Cis the axial vorticity of the basic flow. Pure 
vortices are stable to axially symmetric perturbations (Rayleigh 1880, 1916) if @ > 0 
and unstable (Synge 1933) if @ < 0. If e,  is a unit vector parallel to the wavenumber 
vector, e, = ( -  (n / r )  es+aeZ)/(a2+n2/9)t  where es and ez are unit vectors in the 0- 
and z-directions, then Rayleigh’s parameter can be written 

@ = 2(Ja.e,) (c’e,), (1.2) 

where ( is the vorticity vector of the basic flow, and sd is the angular velocity of fluid 
particles about the axis. In Rayleigh’s case, e,  is along the axis, and the rate-of-strain 
in the basic (‘pure ’-vortex) flow in the axial direction (e,) is zero at each r .  For flows 
with W’ + 0, there is also, at each value of r ,  a principal axis of the rate-of-strain 
tensor along which the rate-of-strain is zero. This axis is tangent to the cylinder at 
T ,  and its direction is given by the unit vector 1 = ( -  W’es+rS2’e,)/(r29’2+ WZ)% 

The criterion (1.1) is developed in I by an asymptotic analysis showing that 
unstable waves are possible (as llzl and 1a1+co) for wavenumber ratios nla only if 
there exist locations r = ro in this flow with 

(1.3a) 

and this condition corresponds to waves, at  r = ro, with rays parallel to 1, the 
principal axis with zero rate of strain: e,  = 1 for these waves. They further showed 
in I that the growth rate is then given by 

wi = (-  @)+, (1.3b) 

with e, replaced by A. Criterion (1.1) is, except for a positive factor, just @ < 0, and 
it arose by the steps just outlined. This leads to the following physical interpretation 
of (1 . l )  : in a curvilinear coordinate system having e, as one axis the flow appears 
(since the rate of strain in the A-direction vanishes) locally to be a pure vortex at a 
radius where e, = 1, and is centrifugally unstable according to the RayleighISynge 
criterion. For very large values of n and a, boundary effects exert little influence and 
local dynamics control behaviour. This interpretation of (1.1) also explains why 
waves with one screw sense (i.e. sign of n / a )  tend to be more unstable (because of 
(1.3~2)) than waves with the opposite screw sense, a fact found by Lessen et al. (1974). 
Ludwieg (1960) also arrived at ( 1.1) as a stability criterion for flow in a narrow annular 
gap by physical reasoning. His treatment did not permit its status as either a 
sufficient or necessary motion for stability to be more determined: indeed it was 
applied as if both necessary and sufficient. A mathematically derived condition 
subsequently derived by Ludwieg (1961) for the narrow-gap annulus differs slightly 
from (1.1) and is not applicable to flows other than in narrow gaps. Very recently, 
Emanuel (1984) has rediscovered Ludwieg’s (1960) derivation of (1.1) and the 
general growth rate given in equation (5.8) of I. 
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A vortex which has been studied extensively is a model of Batchelor’s (1964) 
solution for swirling wakes 

w = e-+, = - (1 -e-ra). (1 *4) 
T 

These profiles also serve as good analytical fits to experimental data from various 
experiments on vortices in tubes. For q a constant, which without loss of generality 
we take to be positive, condition (1.1) implies that the vortex is strongly unstable 
for q < 4 2  when non-axisymmetric perturbations are permitted. 

It is extremely difficult to locate modes that are weakly unstable or neutral by 
direct numerical computation, though in I a certain amount of progress for the case 
of the vortex given by (1.4) was reported. To each pair of values of n and a, a being 
the axial wavenumber of the disturbance, there corresponds a number of different 
modes and these tend to coalesce near the neutral state. The numerical analyst 
therefore has to  guard against mode-jumping as the parameters of the problem are 
varied, and a theoretical treatment of the properties of the near-neutral modes is 
desirable. 

The asymptotic analysis of I predicted maximum growth rates and associated 
wavenumbers very well for strongly unstable flows, but the analysis fails in the 
immediate neighbourhoods of the neutral points, i.e. the upper and lower bounds of 
the admissible values of the ratio a/n(n  + 0) for which unstable modes occur, and 
we seek here to deal with the case of the lower neutral point. A previous paper 
(Stewartson & Capell 1985) considers the upper neutral point. The latter, in the limit 
n+ 00, is given by aq+n- and in this neighbourhood the eigensolutions are, as in 
I, ring-modes in the sense that the disturbance is centred on a finite non-zero value 
of r .  Both analytic and numerical solutions of the limiting form of the governing 
equation were found and these were shown to match with those of I as the appropriate 
variable n(n-aq) became large and positive. No unstable modes with n(n-aq) < 0 
are expected. 

The structure of the modes near the lower neutral point is more subtle. It is shown 
here that, in the limit n + 00, this point is a = !jnq and that the relevant equation, 
instead of having a saddle on the real axis of r which led to the ring modes noted 
above, has the corresponding singularity at a complex value of r and in a 
neighbourhood O ( n f )  of the origin; at the neutral condition this point lies on the 
imaginary axis of r.  An asymptotic expansion for the growth rate is determined, by 
contour deformation through this singularity and integration along a steepest descent 
path, up to and including the term that yields the mode-separation. As expected, the 
term yielding mode-separation is smaller than that in the more unstable range of axial 
wavenumber considered in I. For moderate values of n the numerical studies show 
instability at values of a / n  that are considerably less than & and as the asymptotic 
expansion is of limited practical use unless a - !jnq is small, a heuristic approximation 
is, in addition, briefly investigated. 

Finally, attention is turned to the marginal stability of the vortex. In the limit 
n+ 00 this occurs at q = 4 2  in the neighbourhood of which there are two neutral 
points; if q > 4 2  they are both of the ‘lower’-neutral-point type considered in this 
paper, but if q < 4 2  there is one of this type but the second resembles the upper 
neutral point discussed by Stewartson & Capell. In  addition, an upper bound on q 
for instability is obtained: it is shown that, when n B 1, the vortex is stable if 
q > 1 / 2  (1 + n - ’ / 4 6 ) .  The results in the neighbourhood of marginal stability show 
reasonably good agreement with the numerical studies. 
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2. General analysis near neutral points 
We define a cylindrical polar coordinate system ( r ,  8, z )  where z denotes distance 

parallel to the axis of the columnar vortex measured from some assigned origin, r 
the distance from this axis and 8 is the azimuthal angle. The fluid has a velocity 
component W ( r )  parallel to the z-axis and an azimuthal component V ( r ) ,  where W 
and V are positive functions of r only. The vortex is taken to be unbounded but as 
r + m ,  W+O, while r V  tends to a finite limit. 

This vortex is now subjected to an infinitesimal disturbance in which each 
component of velocity and the pressure is assumed to be of the form 

Y ( r )  exp [iaz-in8-id], (2.1) 

where the !P's are functions of r only, a is a given real constant which may be taken 
to be positive without loss of generality, n is a prescribed integer, and w is a complex 
constant to be found. We shall define /3 = a/n. Numerical studies by Lessen et al. 
(1974) have demonstrated that if, as we shall assume here, the fluid is inviscid, modes 
with n positive are likely to be the most unstable. Indeed, for the trailing vortex given 
by (1.4), they found no unstable modes if n = - 1 and q > 0.08. We therefore consider 
n to be positive. 

If (1 + / 3 V ) f  r 2  #(r )  is the radial dependence (u) of the radial component of the 
velocity perturbation then the equation for u given by Howard & Gupta (1962) is 
placed in the form (see I) 

1 + 10p2r2 - 3/3V 

where y ( r )  = n[pW(r)-Q(r)]-w = nA(r)-o, 

and, as before, primes denote differentiation with respect to r .  For the trailing vortex 
of (1.4) the two definitions of q are equivalent. The associated boundary conditions 
are 

$ + O  as r+O, r + m .  (2.4) 

We wish to find the properties of o for which non-trivial functions 4 can be found 
when n is large. 

The computations by Lessen et al. (1974) suggest that for unstable disturbances 
the maximum growth rate is achieved in the limit n + 00. The studies, both numerical 
and analytical, of I support this conclusion for strongly unstable flows. Two limiting 
situations were noted in I but not extensively discussed; both of these cases deal with 
conditions that correspond formally to the neutral limit of strongly unstable flows. 
One of these has already been considered elsewhere (Stewartson & Capell 1985) and 
the second is the subject of the present study. To explain, we briefly review the 
procedure underlying the analysis undertaken in I. 
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The governing equation (2.2) may be written in the form 

Since K oc n2, for n 9 1 it is a rapidly varying function. The method used in I centres 
on the existence of a point r = r, where K is stationary; this is the point appearing 
in (1 .3a) .  In I ,  such a stationary point was found to exist on the real r-axis, provided 
the condition (1.1) could be met, and the treatment in I was limited to such cases. 
To treat properly nearly neutral modes, the same strategy applies, but more accurate 
calculations need to be made to determine the location of stationary points, and these 
stationary points need not be restricted to the real r-axis. The contour of integration, 
which starts at r = 0 and extends to r = co, may be deformed from the real r-axis 
into the complex r-plane so as to pass through the stationary point. Provided no 
singularities of K(r ;  n, 8, w )  are enclosed between the real r-axis and the deformed 
path C, the eigenvalues w are not affected by the path deformation. Assuming this 
to be the case, the results required here may be found by a local analysis in the 
neighbourhood of the stationary point. In the Appendix, the question of path 
deformation is considered further to confirm that it can be done as presumed (this 
is, without passing over a singularity of K) : this is done by computing steepest descent 
paths which, though not necessary, have the nice property that the choice of such 
paths leads to exponentially small corrections to the local analysis. 

The location of the stationary point itself depends on w ,  of course, and so this 
procedure is of immediate use in computing w only in special circumstances, as in 
the case here of large n. (On the other hand, iterative methods of numerically 
integrating (2.5) by shooting proceed by successively fixing o, then integrating; the 
path deformation used here perhaps could be incorporated into such a process and 
this may prove advantageous.) 

Near T = r,, K takes the form 

K = K,+K2(r-rO)2+K,(r-r , )~+ ..., 
where the K, are independent of r but depend on n. Under the assumption that the 
K, are suitably ordered with n, the K, (j > 2) may be neglected. The entire path of 
integration can be comprised of an inner region traversing r = ro and on which K is 
asymptotically represented by (2.6), and an outer path connecting the inner path to 
the boundary points r = 0 and r = 00. The solution will decay exponentially fast on 
the outer path provided that i t  may be chosen as explained in the Appendix. To match 
with this outer approximation, we must have # + O  as r leaves the immediate 
neighbourhood of r = r,. On the inner path, 4 is given by a Weber function, and 
solutions which decay away from the neighbourhood r = r, are possible only if 

(2.7) 

where 8 is a positive integer. Thus, in this first approximation the expansion (2.6) 
and the condition (2.7) permit the existence of an eigenaolution. Since K a n2, these 
considerations imply that, to lowest order K and its firat derivative vanish together 
at  r = r, for the class of eigensolutions postulated. These conditions on K were shown 
in I to be approximately satisfied for real r, when 

KO K$ = - (28- l), 

" r )  = /9W(r) - sz/(r) = 0, 

which expresses the vanishing of K'(r ) ,  and 

b(r) + (nA(r)-o)z  = 0, (2.9) 
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which expresses the vanishing of K itself. Consequently, 

w =nA(r)+ibt 

(2.10) 

It follows, as shown in I, that the vortex is unstable to disturbances with large 
azimuthal wavenumber if (1.1) holds. The argument fails if b < 0 and no conclusions 
can be reached in this case. It is notable, however, that no unstable modes are known 
to us that are concentrated about values of r for which b < 0. 

There are two parameter ranges which merit further study, both corresponding to 
the (formal) neutral limit of the strongly unstable modes of I. The first arises when 
the value of /3, or of r defined by (2.8), implies that b(r)  < 1, so that a(r) /ny may not 
be neglected in comparison with b(r ) / y2 :  for the trailing vortex of (1.4) this, when 
q < 2/2, is the neighbourhood of the upper neutral point and is the subject of the 
study by Stewartson & Capell (1985) noted above. The second, with which we shall 
be concerned here, arises when the value of r is small and, because of the relative 
sizes of the various terms in K, the requirement that dK/dr = 0 cannot be met by 
simply setting A'(r) = 0 as in (2.8). This is the situation that prevails in the 
neighbourhood of the lower neutral point and leads to considerable computational 
difficulties as experienced by Duck & Foster (1980) and by the present authors in 
I. There are two reasons for this: firstly y vanishes at points in the complex plane 
of r that are very close to the real axis, and secondly the phenomenon of 
mode-jumping assumes serious proportions. It is clear from (2.7) that when n B 1 
there are a large number of modes at fixed p for which, as shown in I, the separation 
in wi between adjacent modes is O(bin3). Thus the possibility of an eigensolution 
jumping from one mode to an adjacent one, as the investigator attempts to follow its 
properties when /3 varies, is always a matter for concern but it becomes serious as 
b+O. Indeed, apart from the recent computations of Stewartson & Capell (1985), 
who adopted an appropriate asymptotic form for the governing equation in the 
neighbourhood of the upper neutral point, all the computations so far reported had 
to be terminated before either neutral point was reached. We shall develop here an 
asymptotic theory, on the lines of but more refined than that of I, which will enable 
us to distinguish between the various modes near the lower neutral point. 

3. The lower neutral points: first stage 
Near the lower neutral point the value ro of r at which dK/dr = 0 is small. 

Anticipating the dominant behaviour of the eigenfunctions to occur near r = 0, we 
first make a preliminary stretching and then treat the simple approximate form of 
the problem by the general procedure outlined in $2. To carry out this program, it 
is necessary to  make some assumptions about the properties of the basic flow near 
the axis. We wish to consider smooth flows so that V, W must have Taylor expansions 
about the origin, but it seems that the only restrictions on the various coefficients 
we can require generally are that V ( 0 )  = V'(0) = W'(0) = 0. It emerges that we may 
need to consider derivatives of V and W up to the fifth and fourth orders respectively 
and hence that there are a large number of different cases to consider. The same 
general method is applicable to all of them even though the scaling laws may differ. 
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We have chosen therefore to illustrate the method by consideration of the trailing 
vortex (1.4) for which 

(3.1 b )  

y(r)  = n[B e+-qr-2(i-e+ )I-@* ( 3 . 1 ~ )  

In  the unstable region discussed in I the value of ro is found by insisting that 

(3.2) PG eri = 1 +r i+ - ,  

and ro is small when B x & .  We shall show that when n is large this is the 
neighbourhood of the lower neutral point. For more general flows the corresponding 
requirement is that 

y'(r,) = 0 ,  i.e. it satisfies 

q 

We now simplify K by taking r to be small and /3= ?jq except in the coefficient of 
r2 in the expansion of y .  Then 

K x E [ l +  2q2(1 -?jq8)  r2 + q(q2 + 2) r2 -- +...I, 
r2 Ye  ny 4n2 (3.4) 

(3.5) y = n(B-q)-w-n(/3-&)r2+-1A+ nq ..., 
12 

where 

and the appropriate primary scaling of r and (/3-&) needed to allow both the 
bracketed expression. in (3.4) and y'(r) to vanish may be seen fo be r - n-f and 
8-b - n f ,  with y N n-k The first two terms in the square bracket in (3.4) are 
then O(1) while the others are O(n4) and may be neglected as long as we ignore 
contributions to w that are O(nS). 

Specifically we adopt the following scaling : 

n(B-q)-w = qA4yonf.  

Equation (2.2) for q5 now simplifies to 

The eigenvalue problem is to find yo as a function of the real variables p and A such 
that # satisfies (3.7), #(O)  = 0 and # - z - ~  as z+oo along the real axis. The first 
boundary condition is simply that of smoothness at the axis of the vortex while the 
second is necessary to ensure a match with the solution when r = O(1) and to be 
compatible with the central assumption that the dominant behaviour of # occurs in 
the neighbourhood of the axis. 
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The general procedure outlined in 52 for ro =I= 0 may now be used to find yo. We 
look for a value z* of z at which the coefficient of q5 in (3.7) has a stationary point. 
We expand this coefficient in powers of (z-z*) ,  retaining only the constant and 
quadratic terms, and note that z-z* = O(n3)  if n is to disappear from the leading 
term of the reduced equation. Finally we determine the value of yo for which this 
equation has an acceptable eigensolution. The value of z* for an unstable mode, with 
wi > 0 and yoi < 0, is found by requiring that 

be stationary and thus, to a first approximation, z* = zo where 

~ z i - 2 , ~ ~ ~  = -i. (3-9) 

We have need for yo only to O(n-l) and to this order the equation for q5 reduces to 

where 

(3.10) 

(3.11) 

Equation (3.10), in essence, is Weber's equation in the variable 2, where 

z = n~[i(~i-2p)z,-"]:~-~,), (3.12) 

and for most rapid decay of the solution away from zo, we shall require that 2 be 
real, and seek solutions of (3.10) that are exponentially small as lZl+oo. This 
determines ro as 

ro = ___ zi[i(zi - 2p) ~;3]+, (3.13) 

where s (2 1) is an integer. In  the z-plane there are two possible directions of 
integration, differing by in, through the point zo. These are given by the fourth roots 
of i(zt - 2p) zo3 taken in pairs. Each direction has its associated 4 because the square 
root in r, has a different sign for each. The appropriate direction must be determined 
by a match with the outer solution in the region IzI = O(1). This is a solution of (3.7) 
for which the path of integration passes through the saddle zo and is optimal in the 
sense described in the Appendix. The appropriate path to choose is the one that tends 
to infinity in Re ( z )  > 0 in such a way that it does not enclose between itself and the 
real axis of z a zero of the function y .  We find, and the evidence for this is discussed 
below, that the required fourth root in (3.12) is that which has argument when 
zo is large, real and positive with the result that yo is determined as 

i(2s- 1) 
2n 

(3.14) 

where the square root in (3.14) has argument in when zo is large, real and positive. 
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The last part of (3.14) arises from the definition of yo, and is included as a reminder 
to the reader that this equation fixes w .  

For all real values of p, of the three roots of (3.9) one is purely imaginary and 
corresponds to real values of o so we may reject it. If p > ,us, where 

p, = - (&)4 = -0.6552, (3.15) 

the other two roots are mirror images in the imaginary axis of z,  and all roots are 
imaginary if p < p,. We choose the root whose real part is positive if p > pe, in order 
that the saddle point occurs in Re ( z )  > 0, and when p is large and positive we have 

and hence from (3.14) and (3.6) that 

i.e. 

(3.16) 

(3.17) 

(3.18) 

which agrees with the result in (4.27) of I if, therein, /?-& is taken to be small. Thus 
for p % 1 the direction of integration through the saddle is, from (3.12) and our 
definition of the root, at an angle -in to the positive real axis. The other possible 
direction is at an angle in and verification that the correct one has been selected must 
be made by consideration of the relative positions of the paths of the outer solution 
and the zeros of the function y. If zl, denote the zeros of y(z) lying in the first and 
fourth quadrants then in the limit p+ 00 we have 

(3.19) 

and it is clear that a path at an angle -in may be joined to the origin and to the 
real z-axis as lzl+ 00 without enclosing either zl, while the rejected path at angle 
in is in danger of enclosing both z1 and zp. 

As p decreases we may trace the properties of zo, zl, z4 and of the angle which the 
path of integration through the point zo must make with the real z-axis. At p = 0 

zo = 34 e-in/6 = 1.249-00.721i, z1 = 1.833+0.491i, z4 = 0.491-1.833i. (3.20) 

The argument of i ( z g - 2 ~ ) ~ ; ~  has increased to in so the required angle is now -in. 
Asp decreases through negative values the argument of i(z2 - 2p) r3 further increases 
until it reaches the value at the last admissible value of p, namely ps in (3.15). 
Here zo has a double zero given by 

z o = z s = - i ( - 2 p , ) ~ = - l . 1 4 5 i ,  (3.21) 

while z1 = 0.780, z4 = -2.910i, yo = yo, = -0.429+... (3.22) 

and the direction of integration is now -in. Paths for the outer solution are computed 
in the Appendix together with the positions of the aingularities z4 for p = 0 to values 
approaching p,. The results given there make clear that the directions of the local 
integration paths selected here correspond to acceptable paths. 

Thus, formally, this method of contour deformation through the saddle has allowed 
us to reach the lower neutral point. As no singularity of the differential equation is 
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enclosed between the deformed contour and the real axis of z, the eigenvalue w will 
have been correctly determined by this procedure though not the properties of the 
eigenfunction 4. The mode separation in wi, given by assigning two different values 
to 8 in (3.14), is O(n-t) ,  rather than O(n-i) as it was in I, and this is in qualitative 
agreement with the numerical work. It would seem that, from a practical point of 
view, the reason for any inadequate agreement between w as derived from (3.14) and 
as obtained from the integration of the full equation (2.2) in the neighbourhood of 
/3 = ?jq for large but finite n in the manner carried out in I is mainly due to the 
replacement of the factor e-I' in b(r) by unity. At q = 1, p = f and n = 4 for instance 

ri = 0.413-0.715i, e-3 = 0.500+0.434i. (3.23) 

This comparison suggests that for moderate values of n more accurate approxima- 
tions may be obtained if, in (3.8), the factor e-I*( 1 ---I* ) is retained while at the same 
time 1 +Pr2 is replaced by unity and the expansion of y is terminated at r4. Then 
(3.8) is replaced by 

np-nq- w -  n( p-h) r2 + n(f/3-&) r4 + iA3q(e-"( 1 -e-I* 1)s ' (3.24) 

and thereafter the same principles are applied as in the determination of (3.14) 
except that now n is fixed and finite from the outset of the calculations. A t  B = f, 
,u = 0 and n = 4 this procedure leads to rt = 0.39-0.223 and w = -l1.92+O.34i as 
against the asymptotic result of w = - 2.3 + 0.42 i and the 'exact ' computed value of 
-1.853+0.304i. Another comparison may be made a t  the neutral point. The 
requirement for this is that (3.24) should have a point of inflexion on the negative 
imaginary axis and this leads to ri = -0.36, = 0.204 and w = -3.01. The asymp- 
totic theory gives ri = -0.52, /? = 0.24 and w = -2.56. It is difficult to pin down 
the lower neutral point accurately from the calculations. Indeed wi remained positive 
right down to /3 = 0.2 when wi = O(lO-') but this number is too small to be reliable. 
The lowest value of /3 at which it could confidently be claimed that wi > 0 is 
/3 = 0.222 where w = -3.003+0.00035i. Thus, for n = 4, the approximate method 
gives an acceptable estimate for w.  At this value of n the asymptotic formula is less 
satisfactory; this is not surprising in view of the relatively large values of r and 1B-!jq1 
that occur near the lower neutral point. The assumption that fB-& x &q used in 
(3.11) to obtain the leading term in y is clearly wrong when B = 0.2, q = 1. None of 
these remarks invalidates the asymptotic theory ; rather they indicate that the 
structure of the modes at large n is more subtle than might have been thought from 
the evidence of the numerical results available to date. 

4. Approach to the lower neutral point 
It is clear that, when ,u = ,us, the analysis of the previous section fails because the 

coefficient of ( ~ - 2 ~ ) ~  in (3.10) vanishes. A further refinement of the scaling is 
necessary in the neighbourhood of ,u = ,us to overcome this deficiency and this also 
enables us to separate the modes to leading order in the differential equation. 

,u = ,us+" (4.1) 
We write 

where E is a small positive number, so that 

zo = z,+(2€)1+ ... 

and 
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where, as in (3.22), yo, is the value of yo as given by (3.14), evaluated at p = p, and 
z = z,. Then 4 satisfies 

in the neighbourhood of z = zo. The equation may be reduced to a simplified form 
in which n is explicitly absent by writing 

and setting 

where 171 = O(1). The form it takes is 

(4.5) 

and as usual we must require that 4 -+O as 171 + co along the real axis of 7. As in 93 
there are two possible directions of the path through zo, that in (4.5) being chosen 
because we know from $3 that as p+ps the limiting path direction makes an angle 
-in with the real axis of z. When 171 is small we may write 4 and cr as power series 
in 7 of which the leading terms are respectively Weber functions and -(2s-l) .  
Further terms may be computed by successive substitution, the details being similar 
to those in I. For the first two modes 

c1 = -1+#T2+1.81674+O(~6), (4.7 

u2 = -3+4.4387’+21.97fl+O(~~), (4.8) 

so that they are now well separated when 7 is small and the difficulties experienced 
with mode-jumping in earlier computations are easier to avoid. 

For larger values of 171, a numerical solution of the eigenvalue problem (4.6) with 
4+0 as Iql-+00 is required. This has been carried out, shooting with a fourth- and 
fifth-order RungeKutta algorithm. Integrations were started from = - L, and 
terminated at 7 = L, where L = 4 was found sufficient for all values of 171. At 7 = - L, 
an asymptotic condition (which may be found by WKB analysis) appropriate for 
Irl+co, 

N 7[1+77$ (4.9) 4 
was used, with #( - L) set at a small value or lob6). The boundary condition as 
7+ 00 is replaced by the asymptotic condition (4.9) and Muller’s method is used to 
adjust B so that (4.9) is satisfied at 7 = L. 

The results of this numerical study are presented in figure 1. As 171 + 00, IcrI + 00. 

The limit problem is easily solved by the same methods after the transformation 

7 = 171-i Y, B = 17Iih. (4.10) 

The limiting value of A is found to be 

h = -(1.1420+0.1809i). (4.11) 
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-2  -‘h 

171 

FIGURE 1.  Real (a) and imaginary ( b )  parts of the eigenvalue cr of (4.6) as functions of 171. The 
asymptotic behaviour of is given by cr = -~~1f(1.1420+0.1809i). 

We now wish to determine whether neutral modes are captured by the asymptotic 
analysis in this section. Now 

qA4n-i = -Yo 
w - n( P - q )  

and the imaginary part of yOs is zero. Thus 

The coefficients of the E: and E4n-t terms are both positive, so that neutral 
conditions may be reached at non-zero values of E only if the third term cancels 
the remaining terms within the braces. This last term, however, is positive, since 
Ikn (-cr esnil4) = (cri-crr)/d2, and this is found to be positive for all 171. 

Formally, (4.12) gives wi = 0 when E = 0, but this corresponds to 17) = 00, since 
(71 cc e - E d .  But the asymptotic behaviour of cr as 1.1 + 03 implies that the third term 
inside the braces in (4.12) is proportional to n-?(h,-h,) with a positive constant of 
proportionality, as )71+03. It therefore does not vanish as E + O ,  so that the formal 
indication of neutral conditions is incorrect. Furthermore, (4.4) is valid provided 
E 9 d; if E is O(n3) or smaller, the coefficient of ( ~ - 2 ~ ) ~  in (4.4) is altered. Thus, 
it is not valid to take the limit e+O in (4.12). 
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Thus, the approach to the neutral point must be resolved by additional analysis 
in a disc within B of O(n3) of the point z = zs ;  this is not attempted here. 

5. Marginal stability 
The theory as developed so far requires that 1 -pq > 0,  in order that b(r) > 0, 

and also /3 > h for the existence of gross instabilities as described in I while 
/3-$ = O(n3) for the weaker instabilities of $$3,4. Thus if q < 4 2  the columnar 
vortex is certainly unstable and if q > 4 2  all the unstable modes that we have 
discussed here disappear as n + 00. The condition q < 4 2  is not in fact necessary for 
instability. An estimate of the range of q beyond 4 2  at which instabilities can occur 
when n %- 1 but finite may be obtained by an extension of the theory of $3. We write 

1 
q = 2 / 2  ( 1+& n ) .  P=&E), 

where &, P are both O( 1) with P > & (since /3q < 1) and n is large. Then by use of 
arguments similar to those of $3 we write 

and the equation for 4 reduces to 

Thus the theory for the marginal stability state is similar to that for the neighbour- 
hood of the lower neutral point except for the implicit scaling and the error term in 
(5.3). The correction due to the non-zero value of z,, is now of the same order of 
magnitude as the mode-separation term, i.e. gives a correction to w that is O(n-2). 
Of special interest is the largest possible value of Q at which a neutral mode is possible. 
This may be found by requiring that 

P + Q  
- = q q F q j j i  (5.4) 

has a minimum value in P > & of -,us = ($)k The minimum value occurs at P = 2& 
and is 3(N)i.  Hence the vortex is stable for large enough n if 

1 &>a. (5.5) 

For smaller positive values of Q the range of admissible P is Q < Pl < P < Pa < 00 

where Pl, P, are the values of P for which Y = - 0.655. Both neutral points are therefore 
of the type hitherto described as lower neutral points and the theory of 94 is 
applicable. However, if & < 0, (q < 4 2 ) ,  Pl = Q and Y is unbounded from above. The 
properties of the upper neutral point (P = &) then require a theory of the kind 
described by Stewartson & Capell (1985) in which the computations and analysis of 
I are extended to the neighbourhood of /3 = pl. The theory of 94 still applies to the 
neutral point P,. 
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4 
1.36 
1.40 
1.44 
1.46 
1.48 
1.50 
1.52 
1.54 
1.56 

a = n/l 

2.48 
2.44 
2.40 
2.38 
2.36 
2.34 
2.22 
2.18 
2.21 

w-CZ+q 

0.145+0.096i 
0.139 + 0.060i 
0.123 + 0.029i 
0.1 12+0.016i 
0.044 + 0.006i 
0.021 +0.001 i 
0.066 + 0.001 i 
0.023 + O.OOO1 i 
0.07O+O.OOOli 

P 
-0.169 
-0.256 
-0.344 
-0.390 
-0.435 
-0.481 
-0.556 
-0.603 
-0.633 

TABLE 1. Principal properties of unstable mode for q 2 1.36, n = 4 

4 
1.40 
1.42 
1.44 
1.46 
1.48 
1.50 
1.52 
1.54 

a = n/l 

3.13 
3.11 
3.08 
3.04 
2.98 
2.95 
2.90 
2.85 

w - - a + q  

0.129+0.063i 
0.122 + 0.044i 
0.1 13 +0.027 i 
0.103+ 0.014i 
0.093 + 0.004i 
0.079 + 0.001 i 
0.055 + O.OOO1 i 
0.032 + O.OOO3i 

P 
-0.256 
-0.308 
-0.365 
-0.427 
-0.495 
-0.551 
-0.612 
-0.671 

TABLE 2. Principal properties of unstable mode for q 2 1.40, n = 5 

Numerical computations of the unstable modes, using the methods described in 
I, are very expensive and time-consuming especially when q > 2/2  and n is small. 
It was possible to carry out only a limited study when n = 4,5 and special attention 
was paid to the modes with maximum growth rate for fixed q as a varies. These modes, 
which are believed to correspond to s = 1, are displayed in tables 1 and 2, together 
with the appropriate value of ,LA which should be approaching -0.6552 at the neutral 
point. For q < 4 2  the overall agreement between the numerical and asymptotic 
estimations of o is only moderately encouraging. On the specific question of the 
largest value of q that permits instability as u varies for fixed n the agreement is good. 
Thus (5.5) predicts values of a and q of 2.251 and 1.558 at n = 4, and of 2.958 and 
1.530 at n = 5.  

6. Discussion 
The procedure, first given in I, for obtaining the asymptotic expansion of the 

eigenvalue w when n % 1 for finite values of p has been extended in this paper to 
provide further information about the properties of w near the lower neutral point. 
The strategy of this method is to find a point ro in the complex r-plane at which K 
in (2.5) is stationary. The procedures developed here, as in our previous paper I, are 
worked out in detail for the basic flow (1.4), but are clearly applicable to a wide class 
of flows. 

In  I, flow (1.4) was considered for (reduced) wavenumbers /3 in the range 
k < p < q-' ; ro is then real to a first approximation. In  that case the eigenfunction 
was expanded as a power series in n-f in a neighbourhood of r0 with size of O(n-i) 
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and w was obtained as a power series in n-4. The lower neutral point is then correctly 
predicted as fl  = !jq in the limit n+ 00 but if n = 4, q = 1, the numerical result is 
/3 x 0.22. This poor agreement contrasts sharply with the excellent correlation for 
the maximum growth rate reported in I. 

We have shown here that, when /3-& = O(nf ) ,  the necessary modification to the 
above approach is to expand w as a power series in n t  and the eigenfunction as a 
power series in n-i in a neighbourhood of ro with size of O(n3) .  This stationary point 
ro of K is now complex and such that Irol = O(n-k). The deformation of the contour 
of integration to go through this point does not have to pass through any singular 
points of the differential equation as long as the assumption of a positive (or negative) 
value of wi is consistent. It emerges that generally the comparison with the numerical 
results is less favourable than previously, the most likely reason being that only 
the leading term in the expansion is considered here while four were computed 
in I. For example, if the leading term only is retained in I then, at q = 1, n = 4, 
/3 = 0.574 for the primary mode, o = - 1.725 + 0.405i as against the computed value 
w = - 1.681 +0.3393, and the asymptotic result, accounting for four terms in the 
expansion, of w = - 1.646 + 0.346i. These discrepancies between the leading term and 
the numerical results found in I are comparable with those found here and the 
inclusion of higher-order terms would presumably result in an improvement in 
accuracy comparable with that found in I. Our principal goal here is to estimate the 
position of the neutral point when n is large but finite and the results given are in 
decidedly better agreement with the behaviour given by the numerical computations, 
even to the extent of placing an upper bound on q for instability for n greater than 
about 4 or 5. 

The computer runs carried out in I to determine w proved to  be extremely 
expensive, very small step sizes being required not only in r but also in the hunting 
process whereby the behaviour of w is traced as a function of q, /3 for fixed n. 
Considerable use of the technique of contour deformation was made but even so these 
difficulties, and the ever-present danger of mode-jumping, effectively prevented us 
from extending these computations to neutral conditions. The analytical theory of 
this paper provides a clue to the resolution of these difficulties, for near the neutral 
mode the critical value ro of r actually lies on the negative imaginary axis of r and 
the choice of contour in the theory, made to ensure that K is real and has a minimum 
at ro, requires that it pass from the third quadrant into the fourth quadrant in such 
a direction that the real part of r is increasing while the imaginary part is decreasing. 
Thus the best contour from the point of view of the computations may be one that 
starts at r = 0 and then allows the real part of r to decrease before turning round and 
ending at r = 00 -0i. The choice of such a contour at  finite values of n is clearly a 
formidable task, but the asymptotic theory may help to provide a convenient start. 

The asymptotic theory also throws some light on the phenomenon of mode- 
jumping, for it shows that as 

. 

decreases to negative values the modes, defined by assigning different integer values 
to s in (3.14), come closer together and eventually differ by O(n-f) very near the lower 
neutral point where p = -0.6552. Again a choice of contour to take advantage of the 
present theory might be helpful in the computation of the leading modes near the 
lower neutral points. 
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The first drafts of this paper were prepared by Keith Stewartson shortly before 
his death in May 1983. Dr Susan Brown gave generously of her time in reading, 
checking, and correcting the paper, and I am most grateful to her. Responsibility 
for any errors which may remain is mine. The work was supported in part by Grant 
MEA 83-06713 of the NSF Fluid Mechanics Program and in part by contract ONR 
SRO-IV with the US Office of Naval Research. 

Appendix 
Computation of contour deformation leading to steepest descent outer paths is 

described here. These are calculated for the scaled problem (3.7), with terms 
proportional to n-t neglected. Then 

-- d2' - n2G(z) 4, 
dz2 

= IGI ei*. 

Introduce a real parameter t ,  and let z = z ( t )  be the contour to be determined in the 
complex z-plane. Then, to lowest order (A 1) is 

where dots signify differentiation with respect to the real variable t .  If iB exp (i$) is 
real and positive everywhere on a path passing through zo, then on such a path # 
will decay (or grow) exponentially fast, and the choice of such a steepest descent path 
will lead to the least correction to the local analysis of $2. There is no guarantee that 
such a path can be made to pass through the boundary points z = 0 and z = 00, but 
the steepest descent paths can be linked to the boundary points by other path 
segments with errors that have been made exponentially small by travelling as far 
as possible on the steepest descent paths. We compute paths by requiring z( t )  to 
satisfy 

i 2  eV = 1,  (A 3) 

with z(0) = zo, the stationary point found earlier. At z = zo, G has a double zero, so 
near z = zo, 

Choice of p gives the four possible directions of steepest descent rays from z = zo : 
These come in (+) pairs, determining two lines which intersect a t  right angles a t  zo. 
To compute the 'optimal' paths, a single step away from zo was taken using Euler's 
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L 

FIQURE 2. Outer integration paths in the complex z-plane, with positions of the singularities of K 
marked by the dots. An acceptable path, which must not have a singularity between it and the 
real z-axis, is drawn as a solid curve. The other, unacceptable, path is drawn dashed. The 
intersection of the solid and dashed curves is the stationary point zo. (a) p = 0, ( b )  p = -0.3, (c) 
p = -0.6, (d )  p = -0.655. Note the incipient development of a kink in the acceptable path. 

algorithm along one of the four descent directions. From the point so reached, a 
fourth-order Runge-Kutta formula was used to continue the integration of 

the appropriate branch ( 
The results of these computations are shown in figure 2 for four values of p 

approaching the limiting value ,us = -0.6552 - . We note that in each case, one path 
through z,, is acceptable (drawn unbroken) as it can be obtained by deforming the 

) being selected. 
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contour from the real z-axis without passing over a singularity of Q, or equivalently, 
of K (those in the first and fourth quadrant are marked on the figures), while the 
second path (drawn with a broken line) is not acceptable. 
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